US009342305B2

a2 United States Patent

Solihin

US 9,342,305 B2
*May 17, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

LOW POWER EXECUTION OF A
MULTITHREADED PROGRAM

Applicant: Empire Technology Development LL.C,
Wilmington, DE (US)

Inventor: Yan Solihin, Apex, NC (US)

Assignee: Empire Technology Development LL.C,
Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 224 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/035,177

Filed: Sep. 24, 2013

Prior Publication Data
US 2014/0026148 A1l Jan. 23, 2014

Related U.S. Application Data

Continuation of application No. 13/129,099, filed as
application No. PCT/US2010/053183 on Oct. 19,
2010, now Pat. No. 8,589,933.

Int. Cl1.

GO6F 9/46 (2006.01)

GO6F 9/30 (2006.01)

GO6F 9/38 (2006.01)

GO6F 9/48 (2006.01)

GO6F 9/52 (2006.01)

U.S. CL

CPC ... GO6F 9/30043 (2013.01); GO6F 93004

Implement "CL" instruction
508

Current Value
Apsent?
£19

YES
Stafl "CL" Instruction
f18

Forward Cohetence Request
&0

Reoeive Current Vaiue
825

Current Valueg

Match Expected

Value?
30

(2013.01); GO6F 9/30072 (2013.01); GO6F
9/30087 (2013.01); GOGF 9/3851 (2013.01);
GO6F 9/4893 (2013.01); GO6F 9/52 (2013.01);
YO02B 60/144 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2007/0074217 Al 3/2007 Rakvic et al.
2007/0113233 Al 5/2007 Collard et al.
2007/0271450 Al  11/2007 Doshi et al.
2008/0320230 Al  12/2008 Vishin et al.
2010/0146480 Al 6/2010 Kalogeropulos et al.
2010/0262786 Al  10/2010 Cummings et al.

FOREIGN PATENT DOCUMENTS

CN 101273335 A 9/2008

OTHER PUBLICATIONS

United States Patent & Trademark Office, International Search
Report and Written Opinion of the International Search Authority for
PCT/US10/53183, Mar. 4, 2011, US.

(Continued)

Primary Examiner — Gregory A Kessler
Assistant Examiner — Steven Do
(74) Attorney, Agent, or Firm — Brundidge & Stanger, P.C.

(57) ABSTRACT

Technologies for low power execution of one or more threads
of' a multithreaded program by one or more processing ele-
ments are generally disclosed.

22 Claims, 6 Drawing Sheets

Continue "CL" instruction
85

Stall or Contisue to Stall "CL” Instruction
836




US 9,342,305 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Li, T., et al., Spin detection hardware for improved management of
multithreaded systems, IEEE Transactions on Parallel and Distrib-
uted Systems, Jun. 6, 2006, pp. 1-14, vol. 17, No. 6.

Naik, Aniket, Efficient Conditional Synchronization for Transac-
tional Memory Based System, School of Electrical and Computer
Engineering, Georgia Institute of Technology, May 2006, pp. 1-83,
accessed on May 6, 2011 via http://smartech.gatech.edu/bitstream/
handle/1853/10517/naik__aniket d_ 200605__mast.pdf;

jsessionid=6D64D7CAFB0552CASODF1DE19AS70FE3.
smartl?sequence=1, Georgia, US.

Yu, Chenjie, et al., Distributed and low-power synchronization archi-
tecture for embedded multiprocessors, Proceedings of the of 6th
IEEE/ACM/IFIP International Conference on Hardware/Software
codesign and system synthesis, Oct. 19-24, 2008, pp. 73-78, New
York, NY.

Li, J., et al., The thrifty barrier: energy-aware synchronization in
shared-memory multiprocessors, Proceedings of the 10th Interna-
tional Symposium on High-Performance Computer Architecture
(HPCA), Feb. 2004, pp. 14, Madrid, Spain.



US 9,342,305 B2

Sheet 1 of 6

May 17, 2016

U.S. Patent

1 Ol

0S| [ouuUBYD UOREDIUNWILIOD

9cl
labeuey
SRIVEIET olg)
144" acl
Aowd |\ Juswia| 3
ayoen Buissas0.id

9Ll
labeue|p

2oUBIeY0D

Oc T opoN Buissaooid

vLL
Aows|p

ayoen

¢ll
Jusw|g

Bulssav0.d

OFF 9pON Buissaosold

Wwa)sSAg Juawa|g buissadold sidiyniy




US 9,342,305 B2

Sheet 2 of 6

May 17, 2016

U.S. Patent

¢ Ol

(¥4
g1e 91¢e vie che
ainjesad ainjesH aines ainesad

11e1s aledwon 1senbay anjep

ove

seorpBIU| O/ 01607 8ousIByo)
0ge 0ce 0G¢
AJowas|\ oboqjonuoy | T T suoneolddy

oL | 1ebeuely adouaiLyon




U.S. Patent May 17, 2016 Sheet 3 of 6 US 9,342,305 B2

Synchronization Primitive 300

// initially R1 has a value of O
LockCode: CL R1, Lockvar // complete the CL if Lockvar
// contains a value of 0, otherwise

// stall the CL instruction
test&set R1, Lockvar // atomically set Lockvar to 1 if
//R1isO
bneqz R1, Lockcode //jump to LockCode if R1!=0
ret

ReleaseCode: st Lockvar, #0 // Lockvar =0
ret

FIG. 3

Synchronization Primitive 400

// initially num_arrived is initialized to 0, barrier_complete to FALSE
count = Atomic_inc (&num_arrived); // atomically increment num_arrived

If (count == NUM_THREADS) /I last thread to arrive at barrier
barrier_complete = TRUE;
else // not the last thread, so wait in loop

CL(&barrier_complete, TRUE); /f conditionally load barrier_complete
// load completes if barrier_complete=TRUE

FIG. 4

Synchronization Primitive 500

Producer thread executes:
Flag =1

Consumer thread executes:
CL(&Flag, 1) // conditionally load flag, load completes if flag ==

FIG. 5



U.S. Patent

May 17, 2016 Sheet 4 of 6

Start
wy

implament "CL" Instruction
S48

Current Vaiue™
Ahsent?

¥ YES

Siall "CL" Instruction

815

¥

Forward Coherence Request
peel]

¥

Receive Current Valus
825

¥

US 9,342,305 B2

Current Value
Match Expecled
Value?

Continus "CLY Instrustion
845

&30

Stall or Continue o 3tall "CLY insbruction
635

Y

YES /Km&a}:e{i
Current

Yalue?

ooy




U.S. Patent May 17, 2016 Sheet 5 of 6 US 9,342,305 B2

700 A computer program produst.

02 Asignal bearing resdiurm,

704 instructions for a first processing slement {o execuie one or more threads
of & multithreaded program, which, when executed by logio, cause the logie ¥

implernent 8 conditional load instruction associated with a synchronization
primitive used by the first processing slemeant {o execute a first thread of the
multithreaded program,

determine whether g current value for a variable for using the
synchronization primitive Is in a cache meamory for the second processing element;

stall the conditional load instruction based &l least on an absence of the
gurrent valus in the cache memory,

forward & coharence request fo a second processing alement based &t
izast on the absence of the current valusy

recatve the current value fraan e ssoond proce
lgast on the cohamnee reguest;

o9y

sing slement based at

compare the receiver current value with an expected value for the
variable; or

continue o stall the conditional load instruction baszed at least on the

companson,
““““““ Ty e T e
{708 s computer- {1 D8 a repordable ; 1710 a communications |
i readable medium. g ! medivin. | ; rresdiurm, i
{ g ; i
S @ b e e e e e e ut e e e i




US 9,342,305 B2

Sheet 6 of 6

May 17, 2016

U.S. Patent

i {15 511 GBI STRI0NG m
m £ - - o p=: /M‘ w
m ; } . o < .wv m
’ f {zag) {5} ] > {opa) (aar %oy {aand mﬁ d) i
ekl {)3aen g - oAy | ZSTJOIRIOTS {roe) Hhviog (16w #dvaoig i
& 4 o e L k & ¥
et Eéd f AT HIOMIID] | ol AFRLIAUY S S0y FRACUIB-UON DEPLALRITNY §
~®ﬁﬂu “““““““““““““““““““ Fid L4 o R m
M &mﬁ | DR Ea5Thap oamios m
: EETETTATI UOWESHTRNGs™ | USSR, . 3 ST —— w“ §§§§§§§§§§ m
, | rr—— i
| T | {0eG] 5 ASCEB m\ ; !
\TLB ”
i ] TP i p:..:E:ZEZHH::::.E;:“ p
f O eovpiong i GTR) g p
Lob, .ﬁm\.\‘ww g ] =X 1 ARNOBuOT Aoepy : i i
S33AC | # : B
mx —_— 53 ...,aw = 1 ¥ %;ﬂ : i j
Ot [R&y P 4 : S - | S —— ]
| s IR ma | : (o1} saopmiBay ; ! {
f - sDeLsE 2 P : o i
| oo LA Y : (£78) p
R coneumsioneegl B 54 B A8/ || SIS P
; {({37%) SASELEA] [PIBUUTI5T | A _ : T : -
x £ cen e - p
i — _ : Buigssa0ag saRpULLy | | | (RGOSR P
: (o Sinesmoany [ T |
m o il OW ,W)HW ~. = ] m m ST} By m xr.m M.L NS m uﬂmy“\.w&ma* m w
i 4 s pny | : Tlasay i sy 111 i
5 mmwﬁﬁﬁm | | 4 450 7 o gt : S H M
¢ i 1 APV TFEETTTT ] By m : , GO “ PV /IO m {
? 4 * FATETY Grb s % St Pt KN H B e T e e Ly e ]
i ﬂﬂw mﬁmmmuoﬁ | | e 540y JORSRRIIE M (7D TRy ATSE CODIeAL B
sopepcdesr
! FUATATY | ] . ; W
f (RTINS | wd e s -
i Rl Eiin RUSALSII R .c i aé?i 53”)&&«3 i




US 9,342,305 B2

1
LOW POWER EXECUTION OF A
MULTITHREADED PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation under 35 U.S.C. § 120 of
U.S. patent application Ser. No. 13/129,099, filed on May 12,
2011, now Pat. No. 8,589,933, and titled “Low Power Execu-
tion of a Multithreaded Program™ which is a national stage
entry under 35 U.S.C. § 371 of International Application No.
PCT/US10/53183, filed on Oct. 19, 2010 both of which are
incorporated herein by reference in their entireties

BACKGROUND

Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.

Some computing environments, such as ubiquitous com-
puting (ubicomp), may include devices that require low
energy usage due to a reliance on batteries or other types of
portable power sources. In some implementations, multi-core
architectures have shown an ability to provide a power and
energy efficient platform compared to monolithic core archi-
tectures and may be well suited for ubicomp devices or other
types of low power computing devices. Furthermore, ubi-
comp devices or other types of low power computing devices
may incorporate a multi-core architecture that executes par-
allel or multithreaded programs to complete computational
tasks. Therefore, mechanisms that allow parallel or multi-
threaded programs to be executed using as little energy as
possible are important due to a computing device’s possible
reliance on a battery or other type of portable power source.

SUMMARY

The present disclosure generally describes implementing
methods for a first processing element to execute one or more
threads of a multithreaded program. According to at least
some methods, a conditional load may be implemented. The
conditional load may be associated with a synchronization
primitive used by the first processing element to execute one
or more threads of the multithreaded program. In some
examples a determination may be made as to whether a cur-
rent value for a variable for using the synchronization primi-
tive is in a cache memory for the first processing element and
the conditional load may be stalled based at least on an
absence of the current value in the cache memory. Also, a
coherence request may be forwarded to a second processing
element based at least on the absence of the current value. The
current value may then be received from the second process-
ing element based at least on the coherence request. The
received current value may then be compared with an
expected value for the variable and the conditional load
instruction may continue to be stalled based at least on the
comparison.

The present disclosure also generally describes example
devices to facilitate the execution of one or more threads of a
multithreaded program by a first processing element. The first
processing element may implement a conditional load
instruction associated with a synchronization primitive used
by the first processing element to execute the first thread. The
example devices may include a coherence manager that has
logic. In some examples the logic may be configured to deter-
mine whether a current value for a variable for using the

10

15

20

25

30

35

40

45

50

55

60

65

2

synchronization primitive is in a cache memory for the first
processing element and the conditional load may be stalled
based at least on an absence of the current value in the cache
memory. Also, the logic may be configured to forward a
coherence request to a second processing element based at
least on the absence of the current value. The current value for
the variable may then be received from the second processing
element based at least on the coherence request. The received
current value for the variable may be compared with an
expected value for the variable and the conditional load
instruction may continue to be stalled based at least on the
comparison.

The present disclosure also generally describes example
systems to execute one or more threads of a multithreaded
program. The example systems may include a first processing
element to execute a first thread of the multithreaded pro-
gram. The example systems may also include a second pro-
cessing element to execute a second thread of the multi-
threaded program. The second processing element may
implement a conditional load instruction associated with a
synchronization primitive used by the second processing ele-
ment to execute the second thread. In some examples, the
second processing element may include a coherence man-
ager. The coherence manager may have logic configured to
determine whether a current value for a variable for using the
synchronization primitive is in a cache memory for the sec-
ond processing element and the conditional load may be
stalled based at least on an absence of the current value in the
cache memory. Also, the logic may be configured to forward
a coherence request to the first processing element based at
least on the absence of the current value. The logic may also
be configured to receive the current value from the first pro-
cessing element based at least on the coherence request and
then compare the received current value with an expected
value for the variable. The logic may be further configured to
possibly continue to stall the conditional load instruction
based at least on the comparison.

The present disclosure also generally describes example
computer program products. In some examples, the computer
program products may include a signal bearing medium hav-
ing instructions for a processing element to execute one or
more threads of a multithreaded program. The instructions,
which when executed by logic may cause the logic to imple-
ment a conditional load instruction associated with a synchro-
nization primitive used to execute a first thread of the multi-
threaded program. The instructions may also cause the logic
to determine whether a current value for a variable for using
the synchronization primitive is in a cache memory for the
first processing element and the conditional load may be
stalled based at least on an absence of the current value in the
cache memory. Also, the instructions may cause the logic to
forward a coherence request to a second processing element
based at least on the absence of the current value. The current
value for the lock variable may then be received from the
second processing element based on the coherence request.
The instructions may also cause the logic to compare the
received current value for the variable with an expected value
for the variable and the conditional load instruction may
continue to be stalled based at least on the comparison.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of this disclosure will
become more fully apparent from the following description



US 9,342,305 B2

3

and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings.

FIG. 1 shows an example multi-core processing system;

FIG. 2 shows a block diagram of an example architecture
for a coherence manager;

FIGS. 3-5 illustrate example synchronization primitives
used by a processing element to execute one or more threads
of a multithreaded program;

FIG. 6 is a flow chart of a method for a processing element
to execute one or more threads of a multithreaded program;

FIG. 7 shows a block diagram of an example computer
program product; and

FIG. 8 illustrates an example computing device, all
arranged in accordance with at least some embodiments of
the present disclosure.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
examples or embodiments described in the detailed descrip-
tion, drawings, and claims are not meant to be limiting. Other
examples or embodiments may be utilized, and other changes
may be made, without departing from the spirit or scope of the
subject matter presented here. It will be readily understood
that aspects of this disclosure, as generally described herein,
and illustrated in the Figures, can be arranged, substituted,
combined, and designed in a wide variety of different con-
figurations, all of which are explicitly contemplated and make
part of this disclosure.

This disclosure is drawn, inter alia, to methods, apparatus,
systems and computer program products related to low power
execution of one or more threads of a multithreaded program
by one or more processing elements.

As contemplated in the present disclosure, mechanisms
that allow parallel or multithreaded programs to be executed
using a low amount of energy may be important due to a
computing device’s possible reliance on a battery or other
type of portable power source. In some examples, a device
that may execute parallel or multithreaded programs may
have a processor architecture that includes multiple processor
cores as processing elements or the device may include a
single processor core with separate thread contexts function-
ing as processing elements. In either case, the processing
elements of the device may jointly execute parallel or multi-
threaded programs. One example of energy wasteful opera-
tions involving multiple processing elements executing mul-
tithreaded programs is an operation commonly referred to as
tight loop spinning. Tight loop spinning may involve one or
more processing elements being held in a tight loop while
attempting to use one or more synchronization primitives to
execute athread of a multithreaded program. For example, the
one or more synchronization primitives may include, but are
not limited to, a lock synchronization, a barrier synchroniza-
tion or a signal-wait synchronization.

Table I below includes an example of how a type of syn-
chronization primitive deemed as a lock synchronization may
be used to acquire a lock for a processing element to execute
a thread of a multithreaded program. As described more
below, use of the example lock synchronization shown in
Table I may lead to tight loop spinning.

10

15

20

25

30

35

40

45

50

55

60

65

4
TABLE 1

// R1 = Lockvar

// Jump to LockCode if R1 1 =0
// atomically set Lockvar to 1 if
/J/R1is0O

// jump to LockCode if R1 1 =0

LockCode: Id R1, Lockvar
bneqz R1, LockCode

test&set R1, LockVar

bneqz R1, LockCode
ret

st Lockvar, #0

ret

ReleaseCode: // Lockvar =0

In some examples, in order to acquire a lock, a first pro-
cessing element attempting to execute a first thread of a
multithreaded program may use the example lock synchroni-
zation shown in Table I starting at the instruction line labeled
as “LockCode”. The software data structure or lock variable
that represents the lock may be stored at location identified as
Lockvar in the example lock synchronization. The lock vari-
able may be maintained in a cache memory for the first
processing element. As the first processing element uses the
example lock synchronization, the value of the lock variable
is first loaded from the memory or cache memory onto a
register for the processing element identified as R1. If] for
example, the value of the loaded lock variable is ““1”, the lock
may be held by a second processing element executing a
second thread. Hence, in order to attempt to acquire the lock
for executing the first thread, the first processing element may
need to keep waiting until the lock variable value loaded into
R1 changes to a value of “0”. The first processing element
spends the time waiting by jumping back to the instruction
line labeled as LockCode and may repeat the instructions in
the example lock synchronization. During this tight loop, the
first processing element that is attempting to execute the first
thread is not idle. The first processing element may continue
implementing the “ld” and “bneqz” instructions of the
example lock synchronization, while continually checking if
the lock variable value loaded into R1 has changed. The type
of tight loop mentioned above typically wastes energy pro-
portional to the length of time the first processing element
waits in this tight loop.

In some examples, as the first processing element contin-
ues in the tight loop caused by using the example lock syn-
chronization shown in Table I, the lock variable loaded into
R1 may eventually be found to have changed to a value of “0”.
A value of “0” may indicate that the second processor element
that had previously held the lock has released the lock. Fur-
ther, using the example lock synchronization, the first pro-
cessing element may perform an atomic instruction identified
as the “test&set” portion of the example lock synchroniza-
tion. The “test&set” atomic instruction may read out the lock
variable value maintained in the first processor’s cache
memory at location LockVar to a register (e.g., R1) and test
the value. In some examples, if the value in the register is “0”,
then a value of “1” is written into the cache memory location
Lockvar by the first processing element. If the value in the
register is “1” at the end of the “test&set” atomic instruction,
the lock acquisition has failed. According to the example lock
synchronization, a failed acquisition at this point may cause a
branch jump back to the LockCode instruction line to retry the
lock acquisition. Note that the “test&set” atomic instruction
may be necessary because a third processing element
attempting to execute a third thread may also be attempting to
acquire a lock on the same data at the same time and only one
processing element may obtain the lock at a given time.

In some examples, using the example synchronization lock
shown in Table I may be problematic to executing multi-
threaded programs using as little energy as possible. For
example, the first processing element may expend high and/or



US 9,342,305 B2

5

wasteful amounts of energy while using the example synchro-
nization lock such that the processing element is stuck in a
tight loop. Also, the first processing element continually
accessing its cache memory to test the value of the lock
variable may also expend high and/or wasteful amounts of
energy.

In some examples, methods are implemented for a process-
ing element to execute one or more threads ofa multithreaded
program. A conditional load instruction may be implemented.
The conditional load instruction may be associated with a
synchronization primitive (e.g., lock synchronization, barrier
synchronization, signal-wait synchronization) used by the
first processing element to execute a first thread of the mul-
tithreaded program. In some examples, a determination may
be made as to whether a current value for a variable (e.g., a
lock variable) for using the synchronization primitive is in a
cache memory for the first processing element and the con-
ditional load may be stalled based at least on an absence of the
current value in the cache memory. Also, a coherence request
may be forwarded to a second processing element based on
the absence of the current value for the variable in a cache
memory for the first processing element. The current value for
the variable may then be received from the second processing
element based on the coherence request. The received current
value may then be compared with an expected value for the
variable and the conditional load instruction may continue to
be stalled based on the comparison. Stalling and/or continu-
ing to stall the conditional load instruction may avoid or
minimize the sorts of energy wasting tight loops mentioned
above.

FIG. 1 shows an example multiple processing element
system 100 in accordance with at least some embodiments of
the present disclosure. As shown in FIG. 1, multiple process-
ing element system 100 includes a processing node 110 and a
processing node 120. In some examples, the elements of
multiple processing element system 100 may be communi-
catively coupled via communication channel 130. Also
shown in FIG. 1, processing node 110 includes a processing
element 112, a cache memory 114 and a coherence manager
116 while processing node 120 includes a processing element
122, a cache memory 124 and a coherence manager 126.
Although multiple processing element system 100 is depicted
in FIG. 1 as including two separate processing nodes, this
disclosure is not limited to a multiple processing element
system having only two processing nodes in that the multiple
processing element system may have more than two process-
ing nodes. Also, this disclosure may also be applicable to
multi-chip multiprocessor systems where threads run on pro-
cessors or processing elements resident on different chips,
multi-core chip where threads run on different cores on a chip,
as well as a multi-threaded core where threads run on differ-
ent thread contexts on the same core.

In some examples, multiple processing element system
100 may be utilized to complete a computational task that
includes an execution of one or more parallel or multi-
threaded programs. For example, separate threads of a mul-
tithreaded program may be separately executed by elements
of processing nodes 110 and 120 (e.g., processing elements
112, 122) to complete at least a portion of the computational
task.

As described in more detail below, to execute one or more
threads of the multithreaded program, a first processing ele-
ment (e.g., processing element 112) of a processing node
(e.g., processing node 110) may implement a conditional load
instruction. In some examples, the conditional load instruc-
tion may be associated with a synchronization primitive used
to execute at least one of the threads of the multithreaded

30

40

45

60

6

program. In some examples, a cache memory for the first
processing element (e.g., cache memory 114) may or may not
include a value for a variable (e.g., a lock variable) for using
the synchronization primitive. If the cache memory does not
include the value for the variable, a coherence manager for the
processing node (e.g., coherence manager 116) may stall the
conditional load instruction and then forward a coherence
request (e.g., via communication channel 130). The request
may be forwarded towards a second processing element (e.g.,
processing element 122) that may have a current value for the
variable included in a cache memory for the second process-
ing element (e.g., cache memory 124).

In some examples, a conditional load instruction may take
various formats. In one example, it may take one memory
operand and one destination register, implicitly expecting a
pre-defined value for that operand, or implicitly expecting the
value loaded from memory may have to match one that is held
in the destination register. Alternatively, in other examples, it
may take one memory operand, one register operand that
contains the expected value, and a destination register.

In some examples, the second processing element may
respond to the coherence request by providing the current
value for the variable. The coherence manager for processing
node 110 may receive the current value for the variable. In
some examples, the coherence manager may compare the
current value to an expected value for the variable. The
expected value, for example, may be a value related to the
type of synchronization primitive being used. For example,
for a lock synchronization, the expected value may indicate
whether a processing element has a lock on data that the first
processing element may need to wait for until the lock
becomes available. If the comparison indicates that the
expected and the current values for the variable do not match,
the coherence manager may stall the conditional load instruc-
tion from being executed by the first processing element. The
conditional load instruction stall, for example, includes with-
holding the current value for the variable from the first pro-
cessing element. The first processing element may then be
placed into various possible energy saving modes and/or
states until the stall on the conditional load instruction is
removed. In some examples, the stall may be removed if,
following additional coherence requests or responses, the
expected and current values for the variable match. For
example, when using lock synchronization, the second pro-
cessing element has subsequently released its lock on the
data.

FIG. 2 shows a block diagram of an example architecture
for coherence manager 116 in accordance with at least some
embodiments of the present disclosure. As described above
for multiple processing element system 100 in FIG. 1, pro-
cessing node 110 includes coherence manager 116. In some
examples, coherence manager 116 includes features and/or
logic configured or arranged to facilitate the execution of one
or more threads of a multithreaded program by processing
element 112 of processing node 110. In some examples,
coherence manager 126 of processing node 120 may have
substantially the same example architecture as depicted for
coherence manager 116 in FIG. 2. In these examples, coher-
ence manager 126 may also include features and/or logic
configured or arranged to facilitate the execution of one or
more threads of a multithreaded program by processing ele-
ment 122 of processing node 120.

The example coherence manager 116 of FIG. 2 includes
coherence logic 210, control logic 220, a memory 230, input/
output (I/O) interfaces 240 and, optionally, one or more appli-
cations 250. As illustrated in FIG. 2, coherence logic 210 is
coupled to control logic 220, memory 230 and I/O interfaces



US 9,342,305 B2

7

240. Also illustrated in FIG. 2, optional applications 250 may
be arranged to operate in cooperation with control logic 220.
Coherence logic 210 may further include one or more of a
value feature 212, a request feature 214, a compare feature
216 and a stall feature 218, or any reasonable combination
thereof. In some alternative examples, some or all of coher-
ence logic 210, control logic 220, memory 230, input/output
(I/O) interfaces 240 and, one or more applications 250, may
be integrated into a cache controller.

In some examples, the elements portrayed in the block
diagram of FIG. 2 are configured to support coherence man-
ager 116 as described in this disclosure. A given coherence
manager 116 may include some, all or more elements than
those depicted in FIG. 2. For example, coherence logic 210
and control logic 220 may separately or collectively represent
a wide variety of logic device(s) to implement the features of
coherence manager 116. An example logic device may
include one or more of a microcontroller, a field program-
mable gate array (FPGA), an application specific integrated
circuit (ASIC), a communications controller, a cache control-
ler or a combination thereof.

As mentioned above, coherence logic 210 may include
value feature 212, request feature 214, compare feature 216 or
stall feature 218. Coherence logic 210 may be configured to
use one or more of these features to perform operations. As
described in more detail below, example operations may
include facilitating the execution of one or more threads of a
multithreaded program by processing element 112.

In some examples, control logic 220 may be configured to
control the overall operation of coherence manager 116. As
mentioned above, control logic 220 may represent any of a
wide variety of logic device(s) configured to operate in con-
junction with executable content or instructions to implement
the control of coherence manager 116. In some alternate
examples, the features and functionality of control logic 220
may be implemented within coherence manager 116.

According to some examples, memory 230 is arranged to
store executable content or instructions. The executable con-
tent or instructions may be used by control logic 220 and/or
coherence logic 210 to implement or activate features or
elements of coherence manager 116. Memory 230 may also
be arranged to temporarily maintain expected and current
values for variables that may be received inresponse to coher-
ence requests by elements or features of coherence manager
116. In some examples, memory 230 may include registers or
other types of memory structures to at least temporarily store
the expected and current values for variables.

Memory 230 may include a wide variety of memory media
including, but not limited to, one or more of volatile memory,
non-volatile memory, flash memory, programmable variables
or states, random access memory (RAM), read-only memory
(ROM), or other static or dynamic storage media.

In some examples, [/O interfaces 240 may provide an inter-
face via an internal communication medium or link between
coherence manager 116 and elements resident on or located
with processing node 110 (e.g., processor element 112 or
cache memory 114). I/O interfaces 240 may also provide an
interface between coherence manager 116 and elements
coupled to processing node 110 such as processing node 120.
As mentioned above for FIG. 1, processing node 110 may
couple to these elements via communication channel 130.
The 1/O interfaces 240, for example, include an interface
configured to operate according to various communication
protocols to allow coherence manager 116 and/or elements of
coherence manager 116 to communicate over communica-
tion channel 130 (e.g., Inter-Integrated Circuit (I.sup.2C),

10

15

20

25

30

35

40

45

50

55

60

8

System Management Bus (SMBus), Serial Peripheral Inter-
face Bus (SPI), HyperTransport (HT), or Quickpath Intercon-
nect (QPI), etc.).

In some examples, coherence manager 116 includes one or
more applications 250 to provide instructions to control logic
220 and/or coherence logic 210. Instructions, for example,
may include instructions for coherence manager 116 to
implement or use value feature 212, request feature 214,
compare feature 216 or stall feature 218.

FIGS. 3-5 illustrate example synchronization primitives
used by a processing element to execute one or more threads
of'a multithreaded program in accordance with at least some
embodiments of the present disclosure. Example synchroni-
zation primitive 300 depicted in FIG. 3 may be a type of
synchronization primitive identified previously as a lock syn-
chronization. In some examples, via use of a lock synchroni-
zation, a processing element may execute one or more threads
of'a multithreaded program. Use of the lock synchronization
may include acquiring a lock variable associated with data
used in the execution of a first thread of the multithreaded
program. Based at least on the acquired lock variable, a lock
may be placed on the data used in the execution of the first
thread. After execution of a critical section in the first thread,
portions of synchronization primitive 300 may be further
used to release the lock. Synchronization primitive 300 is
similar to the synchronization primitive depicted in Table 1.
However, the first two instructions “1d” and “bneqz” have
been replaced with a conditional load “CL” instruction. The
“CL” instruction, for example, may be implemented by the
processing element to acquire the lock variable and the “CL”
instruction may be stalled and/or continue to be stalled based
at least on a comparison of a current value for the lock vari-
able to an expected value for the lock variable.

In some examples, a first processing element attempting to
execute a first thread of the multithreaded program may use
synchronization primitive 300. For example, in order to start
the process of acquiring a lock, the first processing element
may implement synchronization primitive 300 starting at the
instruction line labeled as “LockCode”. As part of the use of
synchronization primitive 300, a “CL” instruction may be
implemented to acquire a lock variable associated with data
for which the lock is sought. A current value for the lock
variable, for example, may be stored in the main memory or
ata cache memory location identified as Lockvar in synchro-
nization primitive 300. As described more below, the “CL”
instruction may be stalled and/or continue to be stalled based
on acomparison of the current value for the lock variable to an
expected value for the lock variable. The stall, for example,
may include stopping or stalling further implementation of
the instructions included in synchronization primitive 300.

In some examples, the stall may be later removed in
response to a subsequent comparison of an updated current
value to an expected value for the lock variable. The removed
stall may then result in implementing additional instructions
of synchronization primitive 300 that may lead to the first
processing element acquiring the lock and then releasing the
lock by finally implementing the remaining instructions of
synchronization primitive 300 at the instruction line labeled
as “ReleaseCode”. The lock may be released, for example,
once the first thread is executed.

Example synchronization primitive 400 depicted in FIG. 4
may be a type of synchronization primitive identified previ-
ously as barrier synchronization. In some examples, viause of
synchronization primitive 400, a processing element may
execute one or more threads of a multithreaded program. Use
of synchronization primitive 400 may enable the processing
element to synchronize thread execution efforts with other



US 9,342,305 B2

9

processing elements. For example, use of synchronization
primitive 400 may involve a current value that indicates
whether a barrier has been completed. Until barrier comple-
tion, a barrier or hold may be placed on a processing element
to stop the execution of one or more threads of a multi-
threaded program until other processing elements have com-
pleted execution of their one or more threads of the multi-
threaded program.

In some examples, use of synchronization primitive 400
may include a processing element maintaining a count of the
number of threads that have been executed (e.g., in a memory
or register maintained by the processing element). For
example, as shown in FIG. 4, num_arrived (e.g., a current
value for a variable) may be initialized to a value of O and
barrier_complete to FALSE. As indications of executed
threads are received from one or more other processing ele-
ments, the processing element may atomically increment
num_arrived to obtain a count value. The count value may
then be compared to a thread execution number that is
depicted in FIG. 4 as NUM_THREADS. NUM_THREADS,
for example, may indicate the number of threads to be
executed in order to complete the barrier, e.g., an expected
value for a variable. If the count equals NUM_THREADS
then the barrier can be completed (e.g., barrier_complete is
set to TRUE). Since the barrier is complete the barrier or hold
is removed and the processing element can continue execu-
tion of the one or more threads. Else, if the count does not
equal NUM_THREADS then the barrier may not be com-
pleted (e.g., barrier_complete is FALSE). In some examples,
based on a barrier_complete==FALSE, a “CL” instruction
may be implemented by the processing element. The “CL”
instruction may stall or stop the processing element from
implementing other portions of synchronization primitive
400 until barrier_complete becomes TRUE.

In some other examples, the stall may be later removed
based on a subsequent comparison of an updated current
value (incremented count value) to an expected value for the
variable (value for NUM_THREADS). The removed stall
may then result in the barrier being removed and then the
processing element may continue to execute one or more
threads of the multithreaded program.

Example synchronization primitive 500 depicted in FIG. 5
may be a type of synchronization primitive identified previ-
ously as signal-wait synchronization. In some examples, via
use of synchronization primitive 500, a processing element
may execute one or more threads of a multithreaded program.
Use of synchronization primitive 500 may enable a process-
ing element that may be executing a consumer thread of a
multithreaded program to implement a “CL” instruction
while the processing element awaits a signal that a producer
thread of the multithreaded program has been executed.

In some examples, use of synchronization primitive 500
may include a processing element monitoring the value of a
flag that may indicate whether a producer thread has been
executed. As shown in FIG. 5§ for synchronization primitive
500, a value of 1 for the flag (e.g., expected value for the
variable) may indicate that the producer thread has been
executed. A “CL” instruction, for example, may be imple-
mented if the current value of the flag is not 1. Similar to the
“CL” instructions for synchronization primitives 300 and
400, implementation of the CL instruction may stall or stop
the processing element from implementing other portion of
synchronization primitive 500 until the current value of the
flagis 1.

In some examples, the stall may be later removed based on
a subsequent comparison of an updated current value (current
value of the flag) to an expected value for the variable (value

10

15

20

25

30

35

40

45

10

of 1 for the flag). The removed stall may then result in the
processing element executing a thread (e.g., a consumer
thread) of the multithreaded program.

FIG. 6 is a flow chart of a method for a processing element
to execute one or more threads of a multithreaded program in
accordance with at least some embodiments of the present
disclosure. In some examples, multiple processing element
system 100 as shown in FIG. 1 may be used to illustrate
example methods related to the flow chart depicted in FIG. 6.
A processing node 110 of multiple processing element sys-
tem 100 having a coherence manager 116, as shown in FIG. 2
may also be used to implement the example methods. Also,
elements of multiple processing element system 100 and/or
coherence manager 116 may implement at least portions of
example synchronization primitives 300, 400 or 500 depicted
in FIGS. 3-5. But the described methods are not limited to
implementations on multiple processing element system 100
as shown in FIG. 1, coherence manager 116 shown in FIG. 2
or to the example synchronization primitives 300, 400 or 500
depicted in FIGS. 3-5.

Beginning at block 605 (Implement “CL” Instruction),
processing element 112 of processing node 110 may include
logic and/or features configured to implement a conditional
load instruction associated with a synchronization primitive
used to execute one or more threads of a multithreaded pro-
gram.

In some examples, acquiring a lock variable associated
with data used by processing element 112 to execute a first
thread of the multithreaded program may include the imple-
mentation of the “CL” instruction of synchronization primi-
tive 300. In other examples, the “CL” instruction of synchro-
nization primitive 400 may be implemented to enable
processing element 112 to determine whether a barrier has
been completed. In yet other examples, a value of a flag
indicating whether a consumer thread has yet to be executed
may cause processing element 112 to implement the “CL”
instruction of synchronization primitive 500.

Continuing from block 605 to decision block 610 (Current
Value Absent?), coherence manager 116 may include logic
and/or features configured to determine (e.g., via value fea-
ture 212) whether a current value for the variable is present or
stored in cache memory 114. In some examples, the current
value may be at least temporarily stored or maintained in
cache memory 114. If a current value for the variable is
present, the process moves to decision block 630. Otherwise,
processing moves to block 615.

Proceeding from decision block 610 to block 615 (Stall
“CL” Instruction), coherence manager 116 may include logic
and/or features configured to stall the “CL” instruction (e.g.,
via stall feature 218) being implemented by processing ele-
ment 112. In some examples, stalling the conditional load
instruction may result from coherence manager 116 with-
holding a current value for the variable. For example, coher-
ence manager may refrain from loading a current value for the
variable from the main memory into the cache memory 114
(i.e. creating a situation similar to a cache miss), or from
cache memory 114 to a register maintained by processing
element 112 (e.g., a register identified as R1). Without a
current value for the variable, processing element 112, for
example, may stop implementing the instructions of the syn-
chronization primitive and may enter an idle or power saving
mode, possibly after some time interval has passed. A power
saving mode may include, but is not limited to, a lowering of
the voltage provided to processing element 112, a lowering of
the frequency of processing element 112, a power gating of
processing element 112, or entering a checkpointing state.



US 9,342,305 B2

11

Continuing from block 615 to block 620 (Forward Coher-
ence Request), coherence manager 116 may include logic
and/or features configured to forward a coherence request
(e.g., via request feature 214) via communication channel
130. In some examples, the absence of a current value for the
variable in cache memory 114 may indicate that execution of
the one or more threads of the multithreaded program may be
on hold. For example, processing element 112 may be await-
ing acquisition of a lock, a barrier completion or an indication
of a producer thread execution.

Continuing from block 620 to block 625 (Receive Current
Value), coherence manager 116 may include logic and/or
features configured to receive the current value for the vari-
able (e.g., via request feature 214) based on the forwarded
coherence request, or based on a broadcasted coherence mes-
sage received from other processing elements that may indi-
cate the value of the variable.

Continuing from block 625 to decision block 630 (Current
Value Match Expected Value?), coherence manager 116 may
include logic and/or features configured to compare (e.g., via
compare feature 216) the received current value to an
expected value for the variable. In some examples, such as
when using synchronization primitive 300, an expected value
for the variable may be a value of “0”. A value of “0” for
example, may indicate that the data is not locked, although
this disclosure is not limited to a value of “0” as an indication
of'the data being locked. For these examples that include use
of synchronization primitive 300, if the current value is “0”
then the current value matches the expected value of “0” and
the process moves to block 645. Otherwise, if the current
value is “1” then the current value does not match and the
process moves to block 635.

In some examples, coherence manager 116 (e.g., via com-
pare feature 216) may maintain a table in a memory (e.g.,
memory 230) to at least temporarily store the address of the
variable, the expected value for the variable, or to also at least
temporarily store the received current value. Coherence man-
ager 166 may utilize the table for the comparison of the two
values.

Proceeding from decision block 630 to block 635 (Stall or
Continue to Stall “CL” Instruction), coherence manager 116
may stall or continue to stall the “CL” instruction being
implemented by processing element 112. As mentioned
above for block 615, processing element 112 may continue to
stop implementing the instructions of the synchronization
primitive and may enter an idle or power saving mode. Alter-
natively, processing element 112 may stop implementing the
instructions of the synchronization primitive and may also
enter an idle or power saving mode if a current value was
present (see decision block 610) and the current value did not
match the expected value (see decision block 630).

Continuing from block 635 to decision block 640 (Updated
Current Value?) coherence manager 116 may determine (e.g.,
via request feature 214) whether any updates to the current
value for the variable have been received from processing
element 122. Ifan updated current value has been received the
process moves back to decision block 630. Otherwise, the
process moves back to block 635 and the stall on the condi-
tional load instruction may be maintained.

As mentioned above at decision block 630, if the current
value matched the expected value for the lock variable, the
process moves to block 645. At block 645 (Continue “CL”
Instruction) coherence manager 116 may provide the current
value for the variable to processing element 112 (e.g., loading
the value to a register maintained by processing element 112).

10

15

20

25

30

35

40

45

50

55

60

65

12

Processing element 112 may then continue to implement the
other instructions of the synchronization primitive and the
process comes to an end.

FIG. 7 shows a block diagram of an example computer
program product 700 in accordance with at least some
embodiments of the present disclosure. In some examples, as
shown in FIG. 7, computer program product 700 includes a
signal bearing medium 702 that may also include instructions
704 for a first processing element (e.g., processing element
112) to execute one or more threads of a multithreaded pro-
gram. Instructions 704, which, when executed by logic (e.g.,
coherence logic 210), may cause the logic to implement a
conditional load instruction associated with a synchroniza-
tion primitive used by the first processing element to execute
a first thread of the multithreaded program. Instructions 704
may also cause the logic to determine whether a current value
for a variable for using the synchronization primitive is in a
cache memory for the second processing element and stall the
conditional load instruction based at least on an absence of the
current value in the cache memory. Instructions 704 may also
cause the logic to forward a coherence request to a second
processing element based on the absence of the current value.
Instructions 704 may also cause the logic to receive the cur-
rent value from the second processing element based on the
coherence request and compare the received current value
with an expected value for the variable. Instruction 704 may
then cause the logic to stall the conditional load instruction
based on the comparison of the received current value and the
expected value.

Also depicted in FIG. 7, in some examples, computer prod-
uct 700 may include one or more of a computer readable
medium 706, a recordable medium 708 and a communica-
tions medium 710. The dotted boxes around these elements
depict different types of mediums included within, but not
limited to, signal bearing medium 702. These types of medi-
ums may distribute instructions 704 to be executed by logic
(e.g., coherence logic 210). Computer readable medium 706
and recordable medium 708 may include, but are not limited
to, a flexible disk, a hard disk drive (HDD), a Compact Disc
(CD), a Digital Versatile Disk (DVD), a digital tape, a com-
puter memory, etc. Communications medium 710 may
include, but is not limited to, a digital and/or an analog com-
munication medium (e.g., a fiber optic cable, a waveguide, a
wired communication link, a wireless communication link,
etc.).

FIG. 8 illustrates an example computing device 800 in
accordance with at least some embodiments of the present
disclosure. In some examples, at least some elements of mul-
tiple processing element system 100 depicted in FIG. 1 may
be implemented on computing device 800. In these examples,
elements of computing device 800 may be arranged or con-
figured to facilitate the execution of one or more threads of a
multithreaded program by a first processing element. In a
very basic configuration 801, computing device 800 typically
includes at least two processor cores 810 and system memory
820. A memory bus 830 can be used for communicating
between processor cores 810 and system memory 820.

Depending on the desired configuration, processor cores
810 can be of any type including but not limited to a micro-
processor (UP), a microcontroller (uC), a digital signal pro-
cessor (DSP), or any combination thereof. Processor cores
810 can include one more levels of caching, such as a level
one cache 811 and a level two cache 812, a primitive process-
ing element 813, and registers 814. Processing clement 813
can include an arithmetic logic unit (ALU), a floating point
unit (FPU), a digital signal processing core (DSP Core), or



US 9,342,305 B2

13

any combination thereof. A memory controller 815 can also
be used with a processor core from among processor cores
810.

Depending on the desired configuration, the system
memory 820 can be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 820 typically includes an operating system
821, one or more applications 822, and program data 824.
Application 822 includes instructions 823 that are arranged to
perform the functions as described herein including the
actions described with respect to coherence manager 116 and
the architecture shown in FIG. 2 or including the actions
described with respect to the flow chart shown in FIG. 4.
Program Data 824 includes synchronization primitive data
825 that may be useful for implementing instructions 823
(e.g., a conditional load instruction or stalling of the condi-
tional load instruction) when using a synchronization primi-
tive to execute a thread of a multithreaded program. In some
examples, application 822 can be arranged to operate with
program data 824 on an operating system 821 such that imple-
mentations of a first processing element to execute one or
more threads of a multithreaded program may be provided as
described herein. This described basic configuration is illus-
trated in FIG. 8 by those components within dashed line 801.

Computing device 800 can have additional features or
functionality, and additional interfaces to facilitate commu-
nications between the basic configuration 801 and any
required devices and interfaces. For example, a bus/interface
controller 840 can be used to facilitate communications
between the basic configuration 801 and one or more data
storage devices 850 via a storage interface bus 841. The data
storage devices 850 can be removable storage devices 851,
non-removable storage devices 852, or a combination
thereof. Examples of removable storage and non-removable
storage devices include magnetic disk devices such as flexible
disk drives and hard-disk drives (HDD), optical disk drives
such as compact disk (CD) drives or digital versatile disk
(DVD) drives, solid state drives (SSD), and tape drives to
name a few. Example computer storage media can include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information, such as computer readable instructions, data
structures, program modules, or other data.

System memory 820, removable storage 851 and non-
removable storage 852 are all examples of computer storage
media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing device 800. Any
such computer storage media can be part of device 800.

Computing device 800 can also include an interface bus
842 for facilitating communication from various interface
devices (e.g., output interfaces, peripheral interfaces, and
communication interfaces) to the basic configuration 801 via
the bus/interface controller 840. Example output interfaces
860 include a graphics processing unit 861 and an audio
processing unit 862, which can be configured to communicate
to various external devices such as a display or speakers via
one or more A/V ports 863. Example peripheral interfaces
870 include a serial interface controller 871 or a parallel
interface controller 872, which can be configured to commu-
nicate with external devices such as input devices (e.g., key-
board, mouse, pen, voice input device, touch input device,

10

15

20

25

30

35

40

45

50

55

60

65

14

etc.) or other peripheral devices (e.g., printer, scanner, etc.)
via one or more 1/O ports 873. An example communication
interface 880 includes a network controller 881, which can be
arranged to facilitate communications with one or more other
computing devices 890 over a network communication via
one or more communication ports 882. A network communi-
cation connection is one example of a communication media.
Communication media may typically be embodied by com-
puter readable instructions, data structures, program mod-
ules, or other data in a modulated data signal, such as a carrier
wave or other transport mechanism, and includes any infor-
mation delivery media. A “modulated data signal” can be a
signal that has one or more of its characteristics set or changed
in such a manner as to encode information in the signal. By
way of example, and not limitation, communication media
can include wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, radio
frequency (RF), infrared (IR) and other wireless media. The
term computer readable media as used herein can include
both storage media and communication media.

Computing device 800 can be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, smart phone, a personal data assistant
(PDA), apersonal media player device, a wireless web-watch
device, a personal headset device, an application specific
device, or a hybrid device that include any of the above
functions. Computing device 800 can also be implemented as
a personal computer including both laptop computer and
non-laptop computer configurations or implemented in a
workstation or a server configuration.

References made in this disclosure to the term “responsive
t0” or “in response to” are not limited to responsiveness to a
particular feature and/or structure. A feature may also be
responsive to another feature and/or structure and also be
located within that feature and/or structure. Moreover, when
terms or phrases such as “coupled” or “responsive” or “in
response to” or “in communication with”, etc. are used herein
or in the claims that follow, these terms should be interpreted
broadly. For example, the phrase “coupled to”” may refer to
being communicatively, electrically and/or operatively
coupled as appropriate for the context in which the phrase is
used.

Those skilled in the art will recognize that it is common
within the art to describe devices and/or processes in the
fashion set forth herein, and thereafter use engineering prac-
tices to integrate such described devices (e.g., processing
elements, processor cores, computing platforms, computing
devices, etc.) and/or methods into data processing systems.
That is, at least a portion of the devices and/or methods
described herein can be integrated into a data processing
system via a reasonable amount of experimentation. Those
having skill in the art will recognize that a typical data pro-
cessing system generally includes one or more of a system
unit housing, a video display device, a memory such as vola-
tile and non-volatile memory, processors such as micropro-
cessors and digital signal processors, computational entities
such as operating systems, drivers, graphical user interfaces,
and applications programs, one or more interaction devices,
such as a touch pad or screen, and/or control systems includ-
ing feedback loops and control motors (e.g., feedback for
sensing position and/or velocity; control motors for moving
and/or adjusting components and/or quantities). A typical
data processing system may be implemented utilizing any
suitable commercially available component, such as those
typically found in data computing/communication and/or
network computing/communication systems.



US 9,342,305 B2

15

The herein described subject matter sometimes illustrates
different components or elements contained within, or con-
nected with, different other components or elements. It is to
be understood that such depicted architectures are merely
examples, and that in fact many other architectures can be
implemented which achieve the same functionality. In a con-
ceptual sense, any arrangement of components to achieve the
same functionality is effectively “associated” such that the
desired functionality is achieved. Hence, any two compo-
nents herein combined to achieve a particular functionality
can be seen as “associated with” each other such that the
desired functionality is achieved, irrespective of architectures
or intermedial components. Likewise, any two components
so associated can also be viewed as being “operably con-
nected”, or “operably coupled”, to each other to achieve the
desired functionality, and any two components capable of
being so associated can also be viewed as being “operably
couplable”, to each other to achieve the desired functionality.
Specific examples of operably couplable include but are not
limited to physically mateable and/or physically interacting
components and/or wirelessly interactable and/or wirelessly
interacting components and/or logically interacting and/or
logically interactable components.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to inventions containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or an
should typically be interpreted to mean “at least one” or “one
or more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”
without other modifiers, typically means at least two recita-
tions, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of A,
B, and C, etc.” is used, in general such a construction is
intended in the sense one having skill in the art would under-
stand the convention (e.g., “a system having at least one of A,
B, and C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
In those instances where a convention analogous to “at least

10

15

20

25

30

35

40

45

50

55

60

65

16

one of A, B, or C, etc.” is used, in general such a construction
is intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least one
of'A, B, or C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
It will be further understood by those within the art that
virtually any disjunctive word and/or phrase presenting two
or more alternative terms, whether in the description, claims,
or drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be under-
stood to include the possibilities of “A” or “B” or “A and B.”

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.

What is claimed is:

1. A method to execute one or more threads of a multi-
threaded program, the method comprising:

implementing, by a first processing element, a conditional

load instruction;

stalling, by the first processing element, a conditional load

instruction associated with a synchronization primitive
when a current value for a variable corresponding to the
synchronization primitive is absent from a cache
memory; and

forwarding, by the first processing element, a coherence

request to a second processing element when the current
value is absent from the cache memory.

2. The method according to claim 1, further comprising:

receiving, by the first processing element, the current value

from the second processing element based at least on the
coherence request;

comparing, by the first processing element, the current

value with an expected value; and

continuing, by the first processing element, to stall the

conditional load instruction based at least on the com-
parison.

3. The method according to claim 2, wherein continuing to
stall the conditional load instruction includes refraining from
loading the current value for the variable from a main memory
into the cache memory.

4. The method according to claim 2, wherein continuing to
stall the conditional load instruction based at least on the
comparison comprises terminating implementation of
instructions of the synchronization primitive.

5. The method according to claim 1, wherein stalling the
conditional load instruction further comprises transitioning
the first processing element to a power saving mode when the
current value is absent from the cache memory.

6. The method according to claim 2, wherein continuing to
stall the conditional load instruction further comprises tran-
sitioning the first processing element to a power saving mode
when the current value is absent from the cache memory.

7. The method according to claim 2, further comprising:

receiving an updated current value for the variable;

comparing the received, updated current value with the
expected value; and

removing the stall on the conditional load instruction based

at least on the comparison.

8. The method according to claim 1, further comprising
inferring that the absence of the current value for the variable



US 9,342,305 B2

17

in the cache memory indicates that execution of the one or
more threads of the multithreaded program is awaiting at least
one of:

an acquisition of a lock, a barrier completion or an indica-

tion of a producer thread execution.

9. The method according to claim 7, wherein removing the
stall on the conditional load instruction includes storing the
updated current value in the cache memory to provide the
updated current value to the first processing element, wherein

the first processing element executes the one or more threads 10

based at least on the updated current value.

10. An apparatus to facilitate an execution of one or more
threads of a multithreaded program by a first processing ele-
ment, the first processing element to implement a conditional
load instruction associated with a synchronization primitive
used by the first processing element to execute a first thread,
the apparatus comprising:

a coherence manager having logic configured to:

stall a conditional load instruction associated with a
synchronization primitive when a current value for a
variable corresponding to the synchronization primi-
tive is absent from a cache memory; and

forward a coherence request to a second processing ele-
ment when the current value is absent from the cache
memory.

11. The apparatus according to claim 10, further compris-
ing the logic configured to:

determine whether the current value for the variable for

using the synchronization primitive is in the cache

memory for the first processing element;

receive the current value from the second processing ele-

ment based at least on the coherence request;

compare the received current value with an expected value

for the variable; and

continue to stall the conditional load instruction based at

least on the comparison.

12. The apparatus according to claim 11, further compris-
ing the logic configured to:

receive an updated current value for the variable; compare

the received, updated current value with the expected

value; and

remove the stall on the conditional load instruction based at

least on the comparison.

13. The apparatus according to claim 11, wherein to con-
tinuing to stall the conditional load instruction includes the
logic further configured to refrain from loading the current
value for the variable from a main memory into the cache
memory.

14. The apparatus according to claim 11, wherein to stall
the conditional load instruction comprises the logic further
configured to avoid execution of a tight loop.

15. The apparatus according to claim 10, wherein the first
processing element and the second processing element are
separate chips in a multi-chip multiprocessor system config-
ured to run one or more threads on processing elements resi-
dent on the separate chips.

16. The apparatus according to claim 10, wherein the con-
ditional load instruction comprises an implicit expectation of
the variable for a memory operand.

20

25

40

45

18

17. The apparatus according to claim 10, wherein the con-
ditional load instruction comprises an implicit expectation of
the current value loaded from the cache memory to match a
known value held in a destination register.

18. A system to execute one or more threads of a multi-
threaded program, the system comprising:

a first processing element to execute a first thread of the

multithreaded program; and

a second processing element to execute a second thread of

the multithreaded program, the second processing ele-

ment including a cache memory and a coherence man-

ager, the second processing element to implement a

conditional load instruction associated with a synchro-

nization primitive used by the second processing ele-

ment to execute the second thread, wherein the coher-

ence manager includes logic configured to:

stall a conditional load instruction associated with the
synchronization primitive when a current value for a
variable corresponding to the synchronization primi-
tive is absent from a cache memory; and

forward a coherence request to the first processing ele-
ment when the current value is absent from the cache
memory.

19. The system according to claim 18, further comprising
logic configured to:

receive the current value from the first processing element

based at least on the coherence request;

compare the received current value with an expected value

for the variable; and

continue to stall the conditional load instruction based at

least on the comparison, wherein to continue to stall the
conditional load instruction includes withholding the
current value for the variable from the second processing
element.

20. The system according to claim 19, further comprising
the logic configured to:

receive an updated current value for the variable from the

first processing element;

compare the received, updated current value with the

expected value; and

remove the stall on the conditional load instruction based at

least on the comparison.

21. The system according to claim 18, further comprising
the logic configured to:

transition the second processing element to a power saving

mode, wherein the power saving mode includes at least
one of a lowering of a voltage provided to the second
processing element, a lowering of a frequency of the
second processing element, a clock gating of the second
processing element, a power gating of the second pro-
cessing element, or entering a checkpointing state.

22. The system according to claim 18, wherein the first
processing element and the second processing element are
separate thread contexts on a multi-threaded core configured
to run separate threads on a same core.

#* #* #* #* #*



